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Abstract. We consider a class of two-dimensional Toda equations on discrete spacetime. It
has arisen as functional relations in a commuting family of transfer matrices in solvable lattice
models associated with any classical simple Lie algebraXr . For Xr = Br, Cr and Dr , we
present the solution in terms of Pfaffians and determinants. They may be viewed as Yangian
analogues of the classical Jacobi–Trudi formula on Schur functions.

1. Introduction

Consider the following systems of difference equations onT (a)
m (u) (m ∈ Z>0, u ∈ C, a ∈

{1, 2, . . . , r}):
Br : (r > 2)

T (a)
m (u − 1)T (a)

m (u + 1) = T
(a)

m+1(u)T
(a)

m−1(u) + T (a−1)
m (u)T (a+1)

m (u)

1 6 a 6 r − 2 (1a)

T (r−1)
m (u − 1)T (r−1)

m (u + 1) = T
(r−1)

m+1 (u)T
(r−1)

m−1 (u) + T (r−2)
m (u)T

(r)

2m (u) (1b)

T
(r)

2m (u − 1
2)T

(r)

2m (u + 1
2) = T

(r)

2m+1(u)T
(r)

2m−1(u) + T (r−1)
m (u − 1

2)T (r−1)
m (u + 1

2) (1c)

T
(r)

2m+1(u − 1
2)T

(r)

2m+1(u + 1
2) = T

(r)

2m+2(u)T
(r)

2m (u) + T (r−1)
m (u)T

(r−1)

m+1 (u) . (1d)

Cr : (r > 2)

T (a)
m (u − 1

2)T (a)
m (u + 1

2) = T
(a)

m+1(u)T
(a)

m−1(u) + T (a−1)
m (u)T (a+1)

m (u) 1 6 a 6 r − 2

(2a)

T
(r−1)

2m (u − 1
2)T

(r−1)

2m (u + 1
2) = T

(r−1)

2m+1 (u)T
(r−1)

2m−1 (u) + T
(r−2)

2m (u)T (r)
m (u − 1

2)T (r)
m (u + 1

2)

(2b)

T
(r−1)

2m+1 (u − 1
2)T

(r−1)

2m+1 (u + 1
2) = T

(r−1)

2m+2 (u)T
(r−1)

2m (u) + T
(r−2)

2m+1 (u)T (r)
m (u)T

(r)

m+1(u) (2c)
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T (r)
m (u − 1)T (r)

m (u + 1) = T
(r)

m+1(u)T
(r)

m−1(u) + T
(r−1)

2m (u). (2d)

Dr : (r > 4)

T (a)
m (u − 1)T (a)

m (u + 1) = T
(a)

m+1(u)T
(a)

m−1(u) + T (a−1)
m (u)T (a+1)

m (u) 1 6 a 6 r − 3

(3a)

T (r−2)
m (u − 1)T (r−2)

m (u + 1) = T
(r−2)

m+1 (u)T
(r−2)

m−1 (u) + T (r−3)
m (u)T (r−1)

m (u)T (r)
m (u) (3b)

T (a)
m (u − 1)T (a)

m (u + 1) = T
(a)

m+1(u)T
(a)

m−1(u) + T (r−2)
m (u) a = r − 1, r. (3c)

(T (0)
m (u) = 1.) We shall consider the initial conditionT (a)

0 (u) = 1 for any 1 6 a 6 r

exclusively. Then one can solve the systems (1), (2) and (3) iteratively to expressT (a)
m (u)

in terms ofT (1)

1 (u+shift), . . . , T (r)

1 (u+shift). For example,T (1)

2 (u) = T
(1)

1 (u−1)T
(1)

1 (u+
1) − T

(2)

1 (u) from (1a). The purpose of this paper is to present the formulae that express
an arbitraryT (a)

m (u) (m > 1) as a determinant or a Pfaffian of matrices with elements 0 or
±T

(b)

1 (u + shift) (0 6 b 6 r).
In fact, such formulae had been partially conjectured in [KNS1], where a set of functional

relations,T -system, was introduced for the commuting family of transfer matrices{T (a)
m (u)}

for solvable lattice models associated with any classical simple Lie algebraXr . In this
context, equations (1), (2) and (3) correspond toXr = Br, Cr and Dr cases of theT -
system, respectively.T (a)

m (u) denotes a transfer matrix (or its eigenvalue) with spectral
parameteru and ‘fusion type’ labelled bya and m [KNS1]. Our result here confirms all
of the determinant conjectures raised in section 5 of [KNS1]. Moreover, it extends them
to a full solution of (1), (2) and (3), which, in general, involves Pfaffians as well. In the
representation theoretical viewpoint, this yields a Yangian analogue of the Jacobi–Trudi
formula [Ma], i.e. a way of constructing Yangian characters from those for the fundamental
representations [CP].

Beside the significance in the lattice model context [KNS2], the beautiful structure in
these solutions indicate a rich content of theT -system also as an example of discretized
soliton equations [AL, H1, H2, H3, H4, HTI, K, DJM, S, VF, BKP, Wa, Wi]. In fact, regarding
u and m as continuous spacetime coordinates, one can take a suitable scaling limit
where theT -system becomes a two-dimensional Toda (or Toda molecule) equation for
Xr [T, MOP, LS]:

(∂2
u − ∂2

m) log φa(u, m) = constant×
r∏

b=1

φb(u, m)−Aab . (4)

Here φa(u, m) is a scaledT (a)
m (u) and Aab = 2(αa|αb)/(αa|αa) is the Cartan matrix. In

this sense, ourT -system is a discretization of the Toda equation allowing determinant and
Pfaffian solutions at least forXr = Ar, Br, Cr and Dr . See also the remarks in section 6
concerning theT -systems for twisted affine Lie algebras [KS].

The outline of the paper is as follows. In sections 2, 3 and 4, we present solutions to
theBr, Cr andDr cases, respectively. Pfaffians are needed forT (r)

m (u) in Cr andT (r−1)
m (u)

andT (r)
m (u) in Dr . In section 5, we illustrate a proof for theCr case. The other cases can

be verified quite similarly. Section 6 is devoted to a summary and discussion.
Before closing the introduction, a few remarks are in order. Firstly, the original

T -system [KNS1] had a factorg(a)
m (u) in front of the second term on theRHS of

T (a)
m (u+ (1/ta))T

(a)
m (u− (1/ta)) = · · · . Throughout this paper we shall setg(a)

m (u) = 1. To
recover the dependence ong(a)

m (u) is quite easy as long as the relationg(a)
m (u+(1/ta))g

(a)
m (u−
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(1/ta)) = g
(a)

m+1(u)g
(a)

m−1(u) is satisfied (cf [KNS1]). Secondly, theT -systems (1) and (2)
coincide forr = 2 under the exchangeT (1)

m (u) ↔ T (2)
m (u), which reflects the Lie algebra

equivalenceB2 ' C2. In this case equations (9) and (12) yield two alternative expressions
for the same quantity. Thirdly, forXr = Ar , the T -systemT (a)

m (u − 1)T (a)
m (u + 1) =

T
(a)

m+1(u)T
(a)

m−1(u) + T (a−1)
m (u)T (a+1)

m (u) (1 6 a 6 r, T (0)
m (u) = T (r+1)

m (u) = 1) is the so-
called Hirota–Miwa equation. In the transfer matrix context, it has been proved in [KNS1]
by using the determinantal formula in [BR]. Finally, forXr = Br , a determinantal solution
different from (9) has been obtained in [KOS]. The relevant matrix there is not sparse,
unlike equations (7) and the matrix elements are not necessarilyT

(a)

1 (u) but contain some
quadratic expressions ofT (r)

1 (u) in general.

2. The Br case

For anyk ∈ C, put

xa
k =

{
T

(a)

1 (u + k) 1 6 a 6 r

1 a = 0 .

(5)

We introduce the infinite-dimensional matricesT = (Tij )i,j∈Z andE = (Eij )i,j∈Z as follows:

Tij =



x
1
2 (j−i)+1
1
2 (i+j)−1

if i ∈ 2Z + 1 and 1
2(i − j) ∈ {1, 0, . . . , 2 − r}

−x
1
2 (i−j)+2r−2
1
2 (i+j)−1

if i ∈ 2Z + 1 and 1
2(i − j) ∈ {1 − r,−r, . . . , 2 − 2r}

−xr

r+i− 5
2

if i ∈ 2Z andj = i + 2r − 3

0 otherwise

Eij =


±1 if i = j − 1 ± 1 andi ∈ 2Z

xr
i−1 if i = j − 1 andi ∈ 2Z + 1

0 otherwise .

(6)

For example, forB3, they read

(Tij )i,j>1 =



x1
0 0 x2

1 0 −x2
2 0 −x1

3 0 −1

0 0 0 0 −x3
5
2

0 0 0 0

1 0 x1
2 0 x2

3 0 −x2
4 0 −x1

5 · · ·
0 0 0 0 0 0 −x3

9
2

0 0

0 0 1 0 x1
4 0 x2

5 0 −x2
6

...
. . .


(7a)

(Eij )i,j>1 =



0 x3
0 0 0 0 0 0

0 1 0 −1 0 0 0

0 0 0 x3
2 0 0 0

0 0 0 1 0 −1 0 · · ·
0 0 0 0 0 x3

4 0

0 0 0 0 0 1 0
...

. . .


. (7b)
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As is evident from the above example, for any 16 a 6 r and k, the quantity±xa
k is

contained inT |u→u+ξ once and only once as its matrix element. Hereu → u + ξ means
the overall shift of lower indices in accordance with (5). For example, the shiftξ = 1 is
necessary to accommodatex1

1 as the (1,1) element ofT |u→u+ξ . In view of this, we shall
employ the notationTm(i, j,±xa

k ) to mean them by m submatrix ofT |u→u+ξ whose(i, j)

element is exactly±xa
k . This definition is unambiguous irrespective of various possible

choices ofξ . For example, in equation (7a),

T3(1, 1, x1
0) =

 x1
0 0 x2

1

0 0 0

1 0 x1
2

 T3(1, 1, x1
1) =

 x1
1 0 x2

2

0 0 0

1 0 x1
3


T2(1, 2, −x3

5
2
) =

( 0 −x3
5
2

0 x2
3

)
T2(1, 2, −x3

2) =
( 0 −x3

2

0 x2
5
2

)
.

(8)

We shall also use the similar notationEm(i, j,±xr
k ). With this notation our result in this

section is stated as follows.

Theorem 2.1. For m ∈ Z>1

T (a)
m (u) = det

(
T2m−1(1, 1, xa

−m+1) + E2m−1(1, 2, xr

−m+r−a+ 1
2
)
)

1 6 a < r (9a)

T (r)
m (u) = (−1)m(m−1)/2 det

(
Tm(1, 2, −xr−1

− 1
2 m+1

) + Em(1, 1, xr

− 1
2 m+ 1

2
)
)

(9b)

solves theBr T -system (1).
Up to some conventional change, equation (9a) in the above had been conjectured in

equation (5.6) of [KNS1]. The formula (9b) is new.

3. The Cr case

Here we introduce the inifinite-dimensional matrixT by

Tij =


x

j−i+1
1
2 (i+j)−1

if i − j ∈ {1, 0, . . . , 1 − r}

−x
i−j+2r+1
1
2 (i+j)−1

if i − j ∈ {−1 − r,−2 − r, . . . ,−1 − 2r}
0 otherwise .

(10)

For example, forC2, it reads

(Tij )i,j>1 =



x1
0 x2

1
2

0 −x2
3
2

−x1
2 −1 0 0

1 x1
1 x2

3
2

0 −x2
5
2

−x1
3 −1 0 · · ·

0 1 x1
2 x2

5
2

0 −x2
7
2

−x1
4 −1

0 0 1 x1
3 x2

7
2

0 −x2
9
2

−x1
5

...
. . .


. (11)

We keep the same notation (5) andTm(i, j,±xa
k ) (1 6 a 6 r) as in section 2. Note that

Tm(1, 2, −xr
k ) is an antisymmetric matrix for anym. Our result in this section is stated as

follows.



Discretized Toda equation 1763

Theorem 3.1. For m ∈ Z>1

T (a)
m (u) = det

(
Tm(1, 1, xa

− 1
2 m+ 1

2
)
)

1 6 a < r (12a)

T (r)
m (u) = (−1)m pf

(
T2m(1, 2, −xr

−m+1)
)

(12b)

solves theCr T -system (2).
The expression (12a) is essentially conjecture (5.10) in [KNS1]. The Pfaffian formula

(12b) is new. In proving theorem 3.1 in section 5, we will also establish the relations

T (r)
m (u − 1

2)T (r)
m (u + 1

2) = det
(
T2m(1, 1, xr

−m+ 1
2
)
)

(13a)

T (r)
m (u)T

(r)

m+1(u) = det
(
T2m+1(1, 1, xr

−m)
)
. (13b)

4. The Dr case

Here we define the infinite-dimensional matricesT andE by

Tij =



x
1
2 (j−i)+1
1
2 (i+j)−1

if i ∈ 2Z + 1 and 1
2(i − j) ∈ {1, 0, . . . , 3 − r}

−xr−1
1
2 (i+j−1)

if i ∈ 2Z + 1 and 1
2(i − j) = 5

2 − r

−xr
1
2 (i+j−3)

if i ∈ 2Z + 1 and 1
2(i − j) = 3

2 − r

−x
1
2 (i−j)+2r−3
1
2 (i+j)−1

if i ∈ 2Z + 1 and

1
2(i − j) ∈ {1 − r,−r, . . . , 3 − 2r}

0 otherwise
(14a)

Eij =


±1 if i = j − 2 ± 2 andi ∈ 2Z

xr−1
i if i = j − 3 andi ∈ 2Z

xr
i−2 if i = j − 1 andi ∈ 2Z

0 otherwise .

(14b)

For example, forD4, they read

(Tij )i,j>1 =



x1
0 0 x2

1 −x3
2 0 −x4

2 −x2
3 0 −x1

4 0 −1

0 0 0 0 0 0 0 0 0 0 0 · · ·
1 0 x1

2 0 x2
3 −x3

4 0 −x4
4 −x2

5 0 −x1
6

0 0 0 0 0 0 0 0 0 0 0
...

. . .

 (15a)

(Eij )i,j>1 =



0 0 0 0 0 0 0 0 0

0 1 x4
0 0 x3

2 −1 0 0 0 . . .

0 0 0 0 0 0 0 0 0

0 0 0 1 x4
2 0 x3

4 −1 0
...

. . .

 . (15b)

We keep the same notation (5),Tm(i, j,±xa
k ) (1 6 a 6 r−2) andTm(i, j,−xa

k ), Em(i, j, xa
k )

(a = r − 1, r) as in section 2. Our result in this section is as follows.
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Theorem 4.1. For m ∈ Z>1

T (a)
m (u) = det

(
T2m−1(1, 1, xa

−m+1) + E2m−1(2, 3, xr
−m−r+a+4)

)
1 6 a 6 r − 2 (16a)

T (r−1)
m (u) = pf

(
T2m(2, 1, −xr−1

−m+1) + E2m(1, 2, xr−1
−m+1)

)
(16b)

T (r)
m (u) = (−1)m pf

(
T2m(1, 2, −xr

−m+1) + E2m(2, 1, xr
−m+1)

)
(16c)

solves theDr T -system (3).
The matrices in (16b), (16c) are indeed antisymmetric. Equation (16a) is essentially

conjecture (5.15) in [KNS1]. The Pfaffian formulae (16b), (16c) are new. By using them
one can demonstrate the relations

T (r−1)
m (u)T (r)

m (u) = (−1)m det
(
T2m(1, 1, −xr−1

−m+1) + E2m(2, 2, xr
−m+1)

)
(17a)

T (r−1)
m (u + 1)T (r)

m (u − 1) = (−1)m det
(
T2m(1, 1, −xr

−m) + E2m(2, 2, xr−1
−m+2)

)
(17b)

T
(r−1)

m+1 (u)T (r)
m (u − 1) = (−1)m+1 det

(
T2m+1(1, 1, −xr−1

−m ) + E2m+1(2, 2, xr
−m)

)
(17c)

T (r−1)
m (u + 1)T

(r)

m+1(u) = (−1)m det
(
T2m+1(2, 1, xr−2

−m+1) + E2m+1(1, 1, xr
−m)

)
. (17d)

The proof of (17) is analogous to that of (13), which will be explained in the next section.

5. Proof of theorem 3.1

Here we shall outline the proof of theorem 3.1, namely that of theCr T -system (2) starting
from (12). As it turns out, all of the three-term relations in (2) reduce to Jacobi’s identity:

D

[
1

1

]
D

[
n

n

]
= DD

[
1, n

1, n

]
+ D

[
1

n

]
D

[
n

1

]
. (18)

HereD is the determinant of anyn by n matrix andD
[

ii ,i2,...

j1,j2,...

]
denotes its minor removing

the ikth rows andjkth columns.
Let us prove equation (13a) first. Taking its square and substituting (12b), we must to

show that

det
(
T2m(1, 2, −xr

−m+ 1
2
)
)

det
(
T2m(1, 2, −xr

−m+ 3
2
)
) =

(
det

(
T2m(1, 1, −xr

−m+ 1
2
)
))2

. (19)

To see this we set

D = det
(
T2m+1(1, 2, −xr

−m+ 1
2
)
) = det



0 −xr

−m+ 1
2

−xr−1
−m+1

xr

−m+ 1
2

0 −xr

−m+ 3
2

· · ·
xr−1

−m+1 xr

−m+ 3
2

0

...
. . .

 = 0 (20)

since this is an antisymmetric matrix with odd size. From (20) it is easy to see that

D

[
1

1

]
= det

(
T2m(1, 2, −xr

−m+ 3
2
)
)

D

[
2m + 1

2m + 1

]
= det

(
T2m(1, 2, −xr

−m+ 1
2
)
)

D

[
1

2m + 1

]
= D

[
2m + 1

1

]
= det

(
T2m(1, 1, xr

−m+ 1
2
)
)
.

(21)
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Thus equation (19) follows immediately from equations (21) and (18). In taking the
square root of (19), the relative sign can be fixed by comparing the coefficients of
xr

−m+1/2x
r
−m+3/2 · · · xr

m−1/2 on both sides, which agrees with (13a). Relation (13b) can be
shown similarly by settingD = det

(
T2m+2(1, 2, −xr

−m)
)
.

Now we proceed to the proof of theT -system (2). To show (2a), it suffices to apply
(18) for D = det

(
Tm+1(1, 1, xa

− m
2
)
) = T

(a)

m+1(u) and to note thatD
[1

1

] = T (a)
m (u + 1

2),

D
[
m+1
m+1

] = T (a)
m (u− 1

2), D
[1,m+1

1,m+1

] = T
(a)

m−1(u), D
[
m+1

1

] = T (a+1)
m (u) andD

[ 1
m+1

] = T (a−1)
m (u).

Similarly (2b) (equation (2c)) can be derived by settingD = det
(
T2m+1(1, 1, xr−1

−m )
) =

T
(r−1)

2m+1 (u) (D = det
(
T2m+2(1, 1, xr−1

−m− 1
2
)
) = T

(r−1)

2m+2 (u)) and using (13a) (equation 13b)) to

identify D
[2m+1

1

]
with T (r)

m (u − 1
2)T (r)

m (u + 1
2) (T (r)

m (u)T
(r)

m+1(u)). Finally to show (2d), we
put D = det

(
T2m+1(1, 1, xr

−m)
)
. Then from (12) and (13) we have

D = T (r)
m (u)T

(r)

m+1(u) D

[
1, 2m + 1

1, 2m + 1

]
= T

(r)

m−1(u)T (r)
m (u)

D

[
1

1

]
= T (r)

m (u)T (r)
m (u + 1) D

[
2m + 1

2m + 1

]
= T (r)

m (u − 1)T (r)
m (u)

D

[
1

2m + 1

]
= T

(r−1)

2m (u) D

[
2m + 1

1

]
= (

T (r)
m (u)

)2
.

(22)

Substituting equation (22) in (18) (forn = 2m + 1) and cancelling out the common factor(
T (r)

m (u)
)2

, we obtain (2d). This completes the proof of theorem 3.1.

6. Summary and discussion

In this paper we have considered the difference equations (1), (2) and (3), which may be
viewed as two-dimensional Toda equations on discrete spacetime as argued in (4). They
have arisen as theBr , Cr andDr cases of theT -system, which are functional relations among
commuting families of transfer matrices in the associated solvable lattice models. Under
the initial conditionT

(a)

0 (u) = 1 (1 6 a 6 r), we have given the solutions (9), (12) and
(16) for T (a)

m (u) with m ∈ Z>1. They are expressed in terms of Pfaffians or determinants
of the matrices (6), (10) and (14), which contain only±T

(a)

1 (u + shift) or ±1 as their
matrix elements. This confirms the earlier conjectures [KNS1] and extends them to the full
solutions.

It will be interesting to extend a similar analysis to theT -system for the exceptional
algebrasE6,7,8, F4, G2 [KNS1] and also the twisted quantum affine algebrasA(2)

n , D(2)
n , E

(2)

6

and D
(3)

4 [KS]. In fact, the solutions to theA(2)
n , D(2)

n and D
(3)

4 cases can be obtained
just by imposing the ‘moduloσ relations’ (equations (3.4) in [KS]) on the corresponding
non-twisted casesAn, Dn and D4 treated in this paper. On the other hand, to deal with
the exceptional cases, it seems necessary to introduce matrices whose elements are some
higher-order expressions in theT (a)

1 (u) analogous to [KOS].
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