Pfaffian and determinant solutions to a discretized Toda equation for $\mathrm{B}_{\mathrm{r}}, \mathrm{C}_{\mathrm{r}}$ and D_{r}

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1996 J. Phys. A: Math. Gen. 291759
(http://iopscience.iop.org/0305-4470/29/8/022)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.71
The article was downloaded on 02/06/2010 at 04:11

Please note that terms and conditions apply.

Pfaffian and determinant solutions to a discretized Toda equation for B_{r}, C_{r} and D_{r}

Atsuo Kuniba $\dagger \|$, Shuichi Nakamura \ddagger - \uparrow and Ryogo Hirota $\dagger \dagger$
\dagger Institute of Physics, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153, Japan \ddagger Department of Electronics and Communication Engineering, School of Science and Engineering, Waseda University, Tokyo 169, Japan
\S Department of Information and Computer Science, Waseda University, Tokyo 169, Japan

Received 14 September 1995

Abstract

We consider a class of two-dimensional Toda equations on discrete spacetime. It has arisen as functional relations in a commuting family of transfer matrices in solvable lattice models associated with any classical simple Lie algebra X_{r}. For $X_{r}=B_{r}, C_{r}$ and D_{r}, we present the solution in terms of Pfaffians and determinants. They may be viewed as Yangian analogues of the classical Jacobi-Trudi formula on Schur functions.

1. Introduction

Consider the following systems of difference equations on $T_{m}^{(a)}(u)\left(m \in \mathbb{Z}_{\geqslant 0}, u \in \mathbb{C}, a \in\right.$ $\{1,2, \ldots, r\})$:
$B_{r}:(r \geqslant 2)$
$T_{m}^{(a)}(u-1) T_{m}^{(a)}(u+1)=T_{m+1}^{(a)}(u) T_{m-1}^{(a)}(u)+T_{m}^{(a-1)}(u) T_{m}^{(a+1)}(u)$

$$
\begin{equation*}
1 \leqslant a \leqslant r-2 \tag{1a}
\end{equation*}
$$

$T_{m}^{(r-1)}(u-1) T_{m}^{(r-1)}(u+1)=T_{m+1}^{(r-1)}(u) T_{m-1}^{(r-1)}(u)+T_{m}^{(r-2)}(u) T_{2 m}^{(r)}(u)$
$T_{2 m}^{(r)}\left(u-\frac{1}{2}\right) T_{2 m}^{(r)}\left(u+\frac{1}{2}\right)=T_{2 m+1}^{(r)}(u) T_{2 m-1}^{(r)}(u)+T_{m}^{(r-1)}\left(u-\frac{1}{2}\right) T_{m}^{(r-1)}\left(u+\frac{1}{2}\right)$
$T_{2 m+1}^{(r)}\left(u-\frac{1}{2}\right) T_{2 m+1}^{(r)}\left(u+\frac{1}{2}\right)=T_{2 m+2}^{(r)}(u) T_{2 m}^{(r)}(u)+T_{m}^{(r-1)}(u) T_{m+1}^{(r-1)}(u)$.
$C_{r}:(r \geqslant 2)$
$T_{m}^{(a)}\left(u-\frac{1}{2}\right) T_{m}^{(a)}\left(u+\frac{1}{2}\right)=T_{m+1}^{(a)}(u) T_{m-1}^{(a)}(u)+T_{m}^{(a-1)}(u) T_{m}^{(a+1)}(u) \quad 1 \leqslant a \leqslant r-2$
$T_{2 m}^{(r-1)}\left(u-\frac{1}{2}\right) T_{2 m}^{(r-1)}\left(u+\frac{1}{2}\right)=T_{2 m+1}^{(r-1)}(u) T_{2 m-1}^{(r-1)}(u)+T_{2 m}^{(r-2)}(u) T_{m}^{(r)}\left(u-\frac{1}{2}\right) T_{m}^{(r)}\left(u+\frac{1}{2}\right)$
$T_{2 m+1}^{(r-1)}\left(u-\frac{1}{2}\right) T_{2 m+1}^{(r-1)}\left(u+\frac{1}{2}\right)=T_{2 m+2}^{(r-1)}(u) T_{2 m}^{(r-1)}(u)+T_{2 m+1}^{(r-2)}(u) T_{m}^{(r)}(u) T_{m+1}^{(r)}(u)$
|| E-mail address: atsuo@hep1.c.u-tokyo.ac.jp
© Present address: Hitachi Ltd, Information Systems Division, 890 Kashimada, Saiwai-ku, Kawasaki, Kanagawa, Japan.
$\dagger \dagger$ E-mail address: roy@hirota.info.waseda.ac.jp
$T_{m}^{(r)}(u-1) T_{m}^{(r)}(u+1)=T_{m+1}^{(r)}(u) T_{m-1}^{(r)}(u)+T_{2 m}^{(r-1)}(u)$.
$D_{r}:(r \geqslant 4)$
$T_{m}^{(a)}(u-1) T_{m}^{(a)}(u+1)=T_{m+1}^{(a)}(u) T_{m-1}^{(a)}(u)+T_{m}^{(a-1)}(u) T_{m}^{(a+1)}(u) \quad 1 \leqslant a \leqslant r-3$
$T_{m}^{(r-2)}(u-1) T_{m}^{(r-2)}(u+1)=T_{m+1}^{(r-2)}(u) T_{m-1}^{(r-2)}(u)+T_{m}^{(r-3)}(u) T_{m}^{(r-1)}(u) T_{m}^{(r)}(u)$
$T_{m}^{(a)}(u-1) T_{m}^{(a)}(u+1)=T_{m+1}^{(a)}(u) T_{m-1}^{(a)}(u)+T_{m}^{(r-2)}(u) \quad a=r-1, r$.
$\left(T_{m}^{(0)}(u)=1\right.$.) We shall consider the initial condition $T_{0}^{(a)}(u)=1$ for any $1 \leqslant a \leqslant r$ exclusively. Then one can solve the systems (1), (2) and (3) iteratively to express $T_{m}^{(a)}(u)$ in terms of $T_{1}^{(1)}(u+\operatorname{shift}), \ldots, T_{1}^{(r)}(u+$ shift $)$. For example, $T_{2}^{(1)}(u)=T_{1}^{(1)}(u-1) T_{1}^{(1)}(u+$ $1)-T_{1}^{(2)}(u)$ from $(1 a)$. The purpose of this paper is to present the formulae that express an arbitrary $T_{m}^{(a)}(u)(m \geqslant 1)$ as a determinant or a Pfaffian of matrices with elements 0 or $\pm T_{1}^{(b)}(u+$ shift $)(0 \leqslant b \leqslant r)$.

In fact, such formulae had been partially conjectured in [KNS1], where a set of functional relations, T-system, was introduced for the commuting family of transfer matrices $\left\{T_{m}^{(a)}(u)\right\}$ for solvable lattice models associated with any classical simple Lie algebra X_{r}. In this context, equations (1), (2) and (3) correspond to $X_{r}=B_{r}, C_{r}$ and D_{r} cases of the T system, respectively. $T_{m}^{(a)}(u)$ denotes a transfer matrix (or its eigenvalue) with spectral parameter u and 'fusion type' labelled by a and m [KNS1]. Our result here confirms all of the determinant conjectures raised in section 5 of [KNS1]. Moreover, it extends them to a full solution of (1), (2) and (3), which, in general, involves Pfaffians as well. In the representation theoretical viewpoint, this yields a Yangian analogue of the Jacobi-Trudi formula [Ma], i.e. a way of constructing Yangian characters from those for the fundamental representations [CP].

Beside the significance in the lattice model context [KNS2], the beautiful structure in these solutions indicate a rich content of the T-system also as an example of discretized soliton equations [AL, H1, H2, H3, H4, HTI, K, DJM, S, VF, BKP, Wa, Wi]. In fact, regarding u and m as continuous spacetime coordinates, one can take a suitable scaling limit where the T-system becomes a two-dimensional Toda (or Toda molecule) equation for X_{r} [T, MOP, LS]:

$$
\begin{equation*}
\left(\partial_{u}^{2}-\partial_{m}^{2}\right) \log \phi_{a}(u, m)=\mathrm{constant} \times \prod_{b=1}^{r} \phi_{b}(u, m)^{-A_{a b}} . \tag{4}
\end{equation*}
$$

Here $\phi_{a}(u, m)$ is a scaled $T_{m}^{(a)}(u)$ and $A_{a b}=2\left(\alpha_{a} \mid \alpha_{b}\right) /\left(\alpha_{a} \mid \alpha_{a}\right)$ is the Cartan matrix. In this sense, our T-system is a discretization of the Toda equation allowing determinant and Pfaffian solutions at least for $X_{r}=A_{r}, B_{r}, C_{r}$ and D_{r}. See also the remarks in section 6 concerning the T-systems for twisted affine Lie algebras [KS].

The outline of the paper is as follows. In sections 2,3 and 4 , we present solutions to the B_{r}, C_{r} and D_{r} cases, respectively. Pfaffians are needed for $T_{m}^{(r)}(u)$ in C_{r} and $T_{m}^{(r-1)}(u)$ and $T_{m}^{(r)}(u)$ in D_{r}. In section 5, we illustrate a proof for the C_{r} case. The other cases can be verified quite similarly. Section 6 is devoted to a summary and discussion.

Before closing the introduction, a few remarks are in order. Firstly, the original T-system [KNS1] had a factor $g_{m}^{(a)}(u)$ in front of the second term on the RHS of $T_{m}^{(a)}\left(u+\left(1 / t_{a}\right)\right) T_{m}^{(a)}\left(u-\left(1 / t_{a}\right)\right)=\cdots$. Throughout this paper we shall set $g_{m}^{(a)}(u)=1$. To recover the dependence on $g_{m}^{(a)}(u)$ is quite easy as long as the relation $g_{m}^{(a)}\left(u+\left(1 / t_{a}\right)\right) g_{m}^{(a)}(u-$
$\left.\left(1 / t_{a}\right)\right)=g_{m+1}^{(a)}(u) g_{m-1}^{(a)}(u)$ is satisfied (cf [KNS1]). Secondly, the T-systems (1) and (2) coincide for $r=2$ under the exchange $T_{m}^{(1)}(u) \leftrightarrow T_{m}^{(2)}(u)$, which reflects the Lie algebra equivalence $B_{2} \simeq C_{2}$. In this case equations (9) and (12) yield two alternative expressions for the same quantity. Thirdly, for $X_{r}=A_{r}$, the T-system $T_{m}^{(a)}(u-1) T_{m}^{(a)}(u+1)=$ $T_{m+1}^{(a)}(u) T_{m-1}^{(a)}(u)+T_{m}^{(a-1)}(u) T_{m}^{(a+1)}(u)\left(1 \leqslant a \leqslant r, T_{m}^{(0)}(u)=T_{m}^{(r+1)}(u)=1\right)$ is the socalled Hirota-Miwa equation. In the transfer matrix context, it has been proved in [KNS1] by using the determinantal formula in [BR]. Finally, for $X_{r}=B_{r}$, a determinantal solution different from (9) has been obtained in [KOS]. The relevant matrix there is not sparse, unlike equations (7) and the matrix elements are not necessarily $T_{1}^{(a)}(u)$ but contain some quadratic expressions of $T_{1}^{(r)}(u)$ in general.

2. The B_{r} case

For any $k \in \mathbb{C}$, put

$$
x_{k}^{a}= \begin{cases}T_{1}^{(a)}(u+k) & 1 \leqslant a \leqslant r \tag{5}\\ 1 & a=0\end{cases}
$$

We introduce the infinite-dimensional matrices $\mathcal{T}=\left(\mathcal{T}_{i j}\right)_{i, j \in \mathbb{Z}}$ and $\mathcal{E}=\left(\mathcal{E}_{i j}\right)_{i, j \in \mathbb{Z}}$ as follows:
$\mathcal{T}_{i j}= \begin{cases}x_{\frac{1}{2}(i+j)-1}^{\frac{1}{2}(j-i)+1} & \text { if } i \in 2 \mathbb{Z}+1 \text { and } \frac{1}{2}(i-j) \in\{1,0, \ldots, 2-r\} \\ -x_{\frac{1}{2}(i+j)+1}^{\frac{1}{2}(i-j)+2 r-2} & \text { if } i \in 2 \mathbb{Z}+1 \text { and } \frac{1}{2}(i-j) \in\{1-r,-r, \ldots, 2-2 r\} \\ -x_{r+i-\frac{5}{2}}^{r} & \text { if } i \in 2 \mathbb{Z} \text { and } j=i+2 r-3 \\ 0 & \text { otherwise }\end{cases}$
$\mathcal{E}_{i j}= \begin{cases} \pm 1 & \text { if } i=j-1 \pm 1 \text { and } i \in 2 \mathbb{Z} \\ x_{i-1}^{r} & \text { if } i=j-1 \text { and } i \in 2 \mathbb{Z}+1 \\ 0 & \text { otherwise } .\end{cases}$
For example, for B_{3}, they read

$$
\begin{align*}
& \left(\mathcal{T}_{i j}\right)_{i, j \geqslant 1}=\left(\begin{array}{cccccccccc}
x_{0}^{1} & 0 & x_{1}^{2} & 0 & -x_{2}^{2} & 0 & -x_{3}^{1} & 0 & -1 & \\
0 & 0 & 0 & 0 & -x_{\frac{5}{2}}^{3} & 0 & 0 & 0 & 0 & \\
1 & 0 & x_{2}^{1} & 0 & x_{3}^{2} & 0 & -x_{4}^{2} & 0 & -x_{5}^{1} & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & -x_{\frac{9}{2}}^{3} & 0 & 0 & \\
0 & 0 & 1 & 0 & x_{4}^{1} & 0 & x_{5}^{2} & 0 & -x_{6}^{2} & \\
& & & & \vdots & & & & & \ddots .
\end{array}\right) \tag{7a}\\
& \left(\mathcal{E}_{i j}\right)_{i, j \geqslant 1}=\left(\begin{array}{cccccccc}
0 & x_{0}^{3} & 0 & 0 & 0 & 0 & 0 & \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & \\
0 & 0 & 0 & x_{2}^{3} & 0 & 0 & 0 & \\
0 & 0 & 0 & 1 & 0 & -1 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & x_{4}^{3} & 0 & \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \\
& & & \vdots & & & \ddots .
\end{array}\right) . \tag{7b}
\end{align*}
$$

As is evident from the above example, for any $1 \leqslant a \leqslant r$ and k, the quantity $\pm x_{k}^{a}$ is contained in $\left.\mathcal{T}\right|_{u \rightarrow u+\xi}$ once and only once as its matrix element. Here $u \rightarrow u+\xi$ means the overall shift of lower indices in accordance with (5). For example, the shift $\xi=1$ is necessary to accommodate x_{1}^{1} as the $(1,1)$ element of $\left.\mathcal{T}\right|_{u \rightarrow u+\xi}$. In view of this, we shall employ the notation $\mathcal{T}_{m}\left(i, j, \pm x_{k}^{a}\right)$ to mean the m by m submatrix of $\left.\mathcal{T}\right|_{u \rightarrow u+\xi}$ whose (i, j) element is exactly $\pm x_{k}^{a}$. This definition is unambiguous irrespective of various possible choices of ξ. For example, in equation (7a),

$$
\begin{array}{cc}
\mathcal{T}_{3}\left(1,1, x_{0}^{1}\right)=\left(\begin{array}{ccc}
x_{0}^{1} & 0 & x_{1}^{2} \\
0 & 0 & 0 \\
1 & 0 & x_{2}^{1}
\end{array}\right) & \mathcal{T}_{3}\left(1,1, x_{1}^{1}\right)=\left(\begin{array}{ccc}
x_{1}^{1} & 0 & x_{2}^{2} \\
0 & 0 & 0 \\
1 & 0 & x_{3}^{1}
\end{array}\right) \tag{8}\\
\mathcal{I}_{2}\left(1,2,-x_{\frac{5}{2}}^{3}\right)=\left(\begin{array}{cc}
0 & -x_{\frac{5}{2}}^{3} \\
0 & x_{3}^{2}
\end{array}\right) & \mathcal{T}_{2}\left(1,2,-x_{2}^{3}\right)=\left(\begin{array}{cc}
0 & -x_{2}^{3} \\
0 & x_{\frac{5}{2}}^{2}
\end{array}\right) .
\end{array}
$$

We shall also use the similar notation $\mathcal{E}_{m}\left(i, j, \pm x_{k}^{r}\right)$. With this notation our result in this section is stated as follows.

Theorem 2.1. For $m \in \mathbb{Z} \geqslant 1$
$T_{m}^{(a)}(u)=\operatorname{det}\left(\mathcal{T}_{2 m-1}\left(1,1, x_{-m+1}^{a}\right)+\mathcal{E}_{2 m-1}\left(1,2, x_{-m+r-a+\frac{1}{2}}^{r}\right)\right) \quad 1 \leqslant a<r$
$T_{m}^{(r)}(u)=(-1)^{m(m-1) / 2} \operatorname{det}\left(\mathcal{T}_{m}\left(1,2,-x_{-\frac{1}{2} m+1}^{r-1}\right)+\mathcal{E}_{m}\left(1,1, x_{-\frac{1}{2} m+\frac{1}{2}}^{r}\right)\right)$
solves the $B_{r} T$-system (1).
Up to some conventional change, equation (9a) in the above had been conjectured in equation (5.6) of [KNS1]. The formula (9b) is new.

3. The C_{r} case

Here we introduce the inifinite-dimensional matrix \mathcal{T} by

$$
\mathcal{T}_{i j}= \begin{cases}x_{\frac{1}{2}(i+j)-1}^{j-i+1} & \text { if } i-j \in\{1,0, \ldots, 1-r\} \tag{10}\\ -x_{\frac{1}{2}(i+j)-1}^{i-j+2 r+1} & \text { if } i-j \in\{-1-r,-2-r, \ldots,-1-2 r\} \\ 0 & \text { otherwise } .\end{cases}
$$

For example, for C_{2}, it reads
$\left(\mathcal{T}_{i j}\right)_{i, j \geqslant 1}=\left(\begin{array}{ccccccccc}x_{0}^{1} & x_{\frac{1}{2}}^{2} & 0 & -x_{\frac{3}{2}}^{2} & -x_{2}^{1} & -1 & 0 & 0 & \\ 1 & x_{1}^{1} & x_{\frac{3}{2}}^{2} & 0 & -x_{\frac{5}{2}}^{2} & -x_{3}^{1} & -1 & 0 & \ldots \\ 0 & 1 & x_{2}^{1} & x_{\frac{5}{2}}^{2} & 0 & -x_{\frac{7}{2}}^{2} & -x_{4}^{1} & -1 & \\ 0 & 0 & 1 & x_{3}^{1} & x_{\frac{7}{2}}^{2} & 0 & -x_{\frac{9}{2}}^{2} & -x_{5}^{1} & \\ & & & & \vdots & & & & \ddots .\end{array}\right)$.
We keep the same notation (5) and $\mathcal{T}_{m}\left(i, j, \pm x_{k}^{a}\right)(1 \leqslant a \leqslant r)$ as in section 2 . Note that $\mathcal{T}_{m}\left(1,2,-x_{k}^{r}\right)$ is an antisymmetric matrix for any m. Our result in this section is stated as follows.

Theorem 3.1. For $m \in \mathbb{Z}_{\geqslant 1}$

$$
\begin{align*}
& T_{m}^{(a)}(u)=\operatorname{det}\left(\mathcal{T}_{m}\left(1,1, x_{-\frac{1}{2} m+\frac{1}{2}}^{a}\right)\right) \quad 1 \leqslant a<r \tag{12a}\\
& T_{m}^{(r)}(u)=(-1)^{m} \operatorname{pf}\left(\mathcal{T}_{2 m}\left(1,2,-x_{-m+1}^{r}\right)\right) \tag{12b}
\end{align*}
$$

solves the $C_{r} T$-system (2).
The expression (12a) is essentially conjecture (5.10) in [KNS1]. The Pfaffian formula (12b) is new. In proving theorem 3.1 in section 5, we will also establish the relations

$$
\begin{align*}
& T_{m}^{(r)}\left(u-\frac{1}{2}\right) T_{m}^{(r)}\left(u+\frac{1}{2}\right)=\operatorname{det}\left(\mathcal{T}_{2 m}\left(1,1, x_{-m+\frac{1}{2}}^{r}\right)\right) \tag{13a}\\
& T_{m}^{(r)}(u) T_{m+1}^{(r)}(u)=\operatorname{det}\left(\mathcal{T}_{2 m+1}\left(1,1, x_{-m}^{r}\right)\right) \tag{13b}
\end{align*}
$$

4. The D_{r} case

Here we define the infinite-dimensional matrices \mathcal{T} and \mathcal{E} by
$\mathcal{T}_{i j}= \begin{cases}x_{\frac{1}{2}(i+j)-1}^{\frac{1}{2}(j-i)+1} & \text { if } i \in 2 \mathbb{Z}+1 \text { and } \frac{1}{2}(i-j) \in\{1,0, \ldots, 3-r\} \\ -x_{\frac{1}{2}(i+j-1)}^{r-1} & \text { if } i \in 2 \mathbb{Z}+1 \text { and } \frac{1}{2}(i-j)=\frac{5}{2}-r \\ -x_{\frac{1}{2}(i+j-3)}^{r} & \text { if } i \in 2 \mathbb{Z}+1 \text { and } \frac{1}{2}(i-j)=\frac{3}{2}-r \\ -x_{\frac{1}{2}(i+j)-1}^{\frac{1}{2}(i-j)+2 r-3} & \text { if } i \in 2 \mathbb{Z}+1 \text { and } \\ 0 & \frac{1}{2}(i-j) \in\{1-r,-r, \ldots, 3-2 r\} \\ 0 & \text { otherwise }\end{cases}$
$\mathcal{E}_{i j}= \begin{cases} \pm 1 & \text { if } i=j-2 \pm 2 \text { and } i \in 2 \mathbb{Z} \\ x_{i}^{r-1} & \text { if } i=j-3 \text { and } i \in 2 \mathbb{Z} \\ x_{i-2}^{r} & \text { if } i=j-1 \text { and } i \in 2 \mathbb{Z} \\ 0 & \text { otherwise } .\end{cases}$
For example, for D_{4}, they read
$\left(\mathcal{T}_{i j}\right)_{i, j \geqslant 1}=\left(\begin{array}{cccccccccccc}x_{0}^{1} & 0 & x_{1}^{2} & -x_{2}^{3} & 0 & -x_{2}^{4} & -x_{3}^{2} & 0 & -x_{4}^{1} & 0 & -1 & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & x_{2}^{1} & 0 & x_{3}^{2} & -x_{4}^{3} & 0 & -x_{4}^{4} & -x_{5}^{2} & 0 & -x_{6}^{1} & \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\ & & & & & & \vdots & & & & & \ddots .\end{array}\right)$
$\left(\mathcal{E}_{i j}\right)_{i, j \geqslant 1}=\left(\begin{array}{cccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\ 0 & 1 & x_{0}^{4} & 0 & x_{2}^{3} & -1 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\ 0 & 0 & 0 & 1 & x_{2}^{4} & 0 & x_{4}^{3} & -1 & 0 & \\ & & & & & \vdots & & & & \ddots .\end{array}\right)$.
We keep the same notation (5), $\mathcal{T}_{m}\left(i, j, \pm x_{k}^{a}\right)(1 \leqslant a \leqslant r-2)$ and $\mathcal{T}_{m}\left(i, j,-x_{k}^{a}\right), \mathcal{E}_{m}\left(i, j, x_{k}^{a}\right)$ ($a=r-1, r$) as in section 2. Our result in this section is as follows.

Theorem 4.1. For $m \in \mathbb{Z}_{\geqslant 1}$
$T_{m}^{(a)}(u)=\operatorname{det}\left(\mathcal{T}_{2 m-1}\left(1,1, x_{-m+1}^{a}\right)+\mathcal{E}_{2 m-1}\left(2,3, x_{-m-r+a+4}^{r}\right)\right) \quad 1 \leqslant a \leqslant r-2$
$T_{m}^{(r-1)}(u)=\operatorname{pf}\left(\mathcal{T}_{2 m}\left(2,1,-x_{-m+1}^{r-1}\right)+\mathcal{E}_{2 m}\left(1,2, x_{-m+1}^{r-1}\right)\right)$
$T_{m}^{(r)}(u)=(-1)^{m} \operatorname{pf}\left(\mathcal{T}_{2 m}\left(1,2,-x_{-m+1}^{r}\right)+\mathcal{E}_{2 m}\left(2,1, x_{-m+1}^{r}\right)\right)$
solves the $D_{r} T$-system (3).
The matrices in $(16 b),(16 c)$ are indeed antisymmetric. Equation (16a) is essentially conjecture (5.15) in [KNS1]. The Pfaffian formulae (16b), (16c) are new. By using them one can demonstrate the relations
$T_{m}^{(r-1)}(u) T_{m}^{(r)}(u)=(-1)^{m} \operatorname{det}\left(\mathcal{T}_{2 m}\left(1,1,-x_{-m+1}^{r-1}\right)+\mathcal{E}_{2 m}\left(2,2, x_{-m+1}^{r}\right)\right)$
$T_{m}^{(r-1)}(u+1) T_{m}^{(r)}(u-1)=(-1)^{m} \operatorname{det}\left(\mathcal{T}_{2 m}\left(1,1,-x_{-m}^{r}\right)+\mathcal{E}_{2 m}\left(2,2, x_{-m+2}^{r-1}\right)\right)$
$T_{m+1}^{(r-1)}(u) T_{m}^{(r)}(u-1)=(-1)^{m+1} \operatorname{det}\left(\mathcal{T}_{2 m+1}\left(1,1,-x_{-m}^{r-1}\right)+\mathcal{E}_{2 m+1}\left(2,2, x_{-m}^{r}\right)\right)$
$T_{m}^{(r-1)}(u+1) T_{m+1}^{(r)}(u)=(-1)^{m} \operatorname{det}\left(\mathcal{T}_{2 m+1}\left(2,1, x_{-m+1}^{r-2}\right)+\mathcal{E}_{2 m+1}\left(1,1, x_{-m}^{r}\right)\right)$.
The proof of (17) is analogous to that of (13), which will be explained in the next section.

5. Proof of theorem 3.1

Here we shall outline the proof of theorem 3.1, namely that of the $C_{r} T$-system (2) starting from (12). As it turns out, all of the three-term relations in (2) reduce to Jacobi's identity:

$$
D\left[\begin{array}{l}
1 \tag{18}\\
1
\end{array}\right] D\left[\begin{array}{l}
n \\
n
\end{array}\right]=D D\left[\begin{array}{l}
1, n \\
1, n
\end{array}\right]+D\left[\begin{array}{l}
1 \\
n
\end{array}\right] D\left[\begin{array}{l}
n \\
1
\end{array}\right]
$$

Here D is the determinant of any n by n matrix and $D\left[\begin{array}{l}i_{i}, i_{2}, \ldots . \\ j_{1}, j_{2}, \ldots\end{array}\right]$ denotes its minor removing the i_{k} th rows and j_{k} th columns.

Let us prove equation (13a) first. Taking its square and substituting (12b), we must to show that

$$
\begin{equation*}
\operatorname{det}\left(\mathcal{T}_{2 m}\left(1,2,-x_{-m+\frac{1}{2}}^{r}\right)\right) \operatorname{det}\left(\mathcal{T}_{2 m}\left(1,2,-x_{-m+\frac{3}{2}}^{r}\right)\right)=\left(\operatorname{det}\left(\mathcal{T}_{2 m}\left(1,1,-x_{-m+\frac{1}{2}}^{r}\right)\right)\right)^{2} \tag{19}
\end{equation*}
$$

To see this we set
$D=\operatorname{det}\left(\mathcal{T}_{2 m+1}\left(1,2,-x_{-m+\frac{1}{2}}^{r}\right)\right)=\operatorname{det}\left(\begin{array}{cccc}0 & -x_{-m+\frac{1}{2}}^{r} & -x_{-m+1}^{r-1} & \\ x_{-m+\frac{1}{2}}^{r} & 0 & -x_{-m+\frac{3}{2}}^{r} & \cdots \\ x_{-m+1}^{r-1} & x_{-m+\frac{3}{2}}^{r} & 0 & \\ & \vdots & & \ddots .\end{array}\right)=0$
since this is an antisymmetric matrix with odd size. From (20) it is easy to see that

$$
\begin{align*}
& D\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\operatorname{det}\left(\mathcal{T}_{2 m}\left(1,2,-x_{-m+\frac{3}{2}}^{r}\right)\right) \\
& D\left[\begin{array}{l}
2 m+1 \\
2 m+1
\end{array}\right]=\operatorname{det}\left(\mathcal{T}_{2 m}\left(1,2,-x_{-m+\frac{1}{2}}^{r}\right)\right) \tag{21}\\
& D\left[\begin{array}{c}
1 \\
2 m+1
\end{array}\right]=D\left[\begin{array}{c}
2 m+1 \\
1
\end{array}\right]=\operatorname{det}\left(\mathcal{T}_{2 m}\left(1,1, x_{-m+\frac{1}{2}}^{r}\right)\right)
\end{align*}
$$

Thus equation (19) follows immediately from equations (21) and (18). In taking the square root of (19), the relative sign can be fixed by comparing the coefficients of $x_{-m+1 / 2}^{r} x_{-m+3 / 2}^{r} \cdots x_{m-1 / 2}^{r}$ on both sides, which agrees with (13a). Relation (13b) can be shown similarly by setting $D=\operatorname{det}\left(\mathcal{T}_{2 m+2}\left(1,2,-x_{-m}^{r}\right)\right)$.

Now we proceed to the proof of the T-system (2). To show ($2 a$), it suffices to apply (18) for $D=\operatorname{det}\left(\mathcal{T}_{m+1}\left(1,1, x_{-\frac{m}{2}}^{a}\right)\right)=T_{m+1}^{(a)}(u)$ and to note that $D\left[\begin{array}{l}1 \\ 1\end{array}\right]=T_{m}^{(a)}\left(u+\frac{1}{2}\right)$, $D\left[\begin{array}{c}m+1 \\ m+1\end{array}\right]=T_{m}^{(a)}\left(u-\frac{1}{2}\right), D\left[\begin{array}{c}1, m+1 \\ 1, m+1\end{array}\right]=T_{m-1}^{(a)}(u), D\left[\begin{array}{c}m+1 \\ 1\end{array}\right]=T_{m}^{(a+1)}(u)$ and $D\left[\begin{array}{c}1 \\ m+1\end{array}\right]=T_{m}^{(a-1)}(u)$. Similarly (2b) (equation (2c)) can be derived by setting $D=\operatorname{det}\left(\mathcal{T}_{2 m+1}\left(1,1, x_{-m}^{r-1}\right)\right)=$ $T_{2 m+1}^{(r-1)}(u)\left(D=\operatorname{det}\left(\mathcal{T}_{2 m+2}\left(1,1, x_{-m-\frac{1}{2}}^{r-1}\right)\right)=T_{2 m+2}^{(r-1)}(u)\right)$ and using (13a) (equation $\left.13 b\right)$) to identify $D\left[\begin{array}{c}2 m+1 \\ 1\end{array}\right]$ with $T_{m}^{(r)}\left(u-\frac{1}{2}\right) T_{m}^{(r)}\left(u+\frac{1}{2}\right)\left(T_{m}^{(r)}(u) T_{m+1}^{(r)}(u)\right)$. Finally to show ($2 d$), we put $D=\operatorname{det}\left(\mathcal{T}_{2 m+1}\left(1,1, x_{-m}^{r}\right)\right)$. Then from (12) and (13) we have

$$
\begin{align*}
& D=T_{m}^{(r)}(u) T_{m+1}^{(r)}(u) \quad D\left[\begin{array}{c}
1,2 m+1 \\
1,2 m+1
\end{array}\right]=T_{m-1}^{(r)}(u) T_{m}^{(r)}(u) \\
& D\left[\begin{array}{l}
1 \\
1
\end{array}\right]=T_{m}^{(r)}(u) T_{m}^{(r)}(u+1) \quad D\left[\begin{array}{c}
2 m+1 \\
2 m+1
\end{array}\right]=T_{m}^{(r)}(u-1) T_{m}^{(r)}(u) \tag{22}\\
& D\left[\begin{array}{c}
1 \\
2 m+1
\end{array}\right]=T_{2 m}^{(r-1)}(u) \quad D\left[\begin{array}{c}
2 m+1 \\
1
\end{array}\right]=\left(T_{m}^{(r)}(u)\right)^{2} .
\end{align*}
$$

Substituting equation (22) in (18) (for $n=2 m+1$) and cancelling out the common factor $\left(T_{m}^{(r)}(u)\right)^{2}$, we obtain (2d). This completes the proof of theorem 3.1.

6. Summary and discussion

In this paper we have considered the difference equations (1), (2) and (3), which may be viewed as two-dimensional Toda equations on discrete spacetime as argued in (4). They have arisen as the B_{r}, C_{r} and D_{r} cases of the T-system, which are functional relations among commuting families of transfer matrices in the associated solvable lattice models. Under the initial condition $T_{0}^{(a)}(u)=1(1 \leqslant a \leqslant r)$, we have given the solutions (9), (12) and (16) for $T_{m}^{(a)}(u)$ with $m \in \mathbb{Z}_{\geqslant 1}$. They are expressed in terms of Pfaffians or determinants of the matrices (6), (10) and (14), which contain only $\pm T_{1}^{(a)}(u+$ shift $)$ or ± 1 as their matrix elements. This confirms the earlier conjectures [KNS1] and extends them to the full solutions.

It will be interesting to extend a similar analysis to the T-system for the exceptional algebras $E_{6,7,8}, F_{4}, G_{2}[\mathrm{KNS} 1]$ and also the twisted quantum affine algebras $A_{n}^{(2)}, D_{n}^{(2)}, E_{6}^{(2)}$ and $D_{4}^{(3)}[\mathrm{KS}]$. In fact, the solutions to the $A_{n}^{(2)}, D_{n}^{(2)}$ and $D_{4}^{(3)}$ cases can be obtained just by imposing the 'modulo σ relations' (equations (3.4) in [KS]) on the corresponding non-twisted cases A_{n}, D_{n} and D_{4} treated in this paper. On the other hand, to deal with the exceptional cases, it seems necessary to introduce matrices whose elements are some higher-order expressions in the $T_{1}^{(a)}(u)$ analogous to [KOS].

Acknowledgments

One of the authors (AK) thanks E Date, L D Faddeev, K Fujii, Y Ohta, J Suzuki and P B Wiegmann for helpful discussions.

References

[AL] Ablowitz M J and Ladik F J 1976 Stud. Appl. Math. 55 213; 1977 Stud. Appl. Math. 571
[BKP] Bobenko A, Kuts N and Pinkall U 1993 Phys. Lett. 177A 399
[BR] Bazhanov V V and Reshetikhin N Yu 1990 J. Phys. A: Math. Gen. 231477
[CP] Chari V and Pressley A 1991 J. Reine Angew. Math. 41787
[DJM] Date E, Jimbo M and Miwa T 1982 J. Phys. Soc. Japan 51 4116; 4125; 1983 J. Phys. Soc. Japan 52 388; 761; 766
[H1] Hirota R 1977 J. Phys. Soc. Japan 431424
[H2] Hirota R 1978 J. Phys. Soc. Japan 45321
[H3] Hirota R 1981 J. Phys. Soc. Japan 503785
[H4] Hirota R 1987 J. Phys. Soc. Japan 564285
[HTI] Hitota R, Tsujimoto S and Imai T 1992 Future Directions of Nonlinear Dynamics in Physical and Biological Systems (Nato ASI Series) ed P L Christiansen, J C Eilbeck and R D Parmentier
[K] Krichever I M 1978 Russian Math. Surveys 33 (4) 255
[KNS1] Kuniba A, Nakanishi T and Suzuki J 1994 Int. J. Mod. Phys. A 95215
[KNS2] Kuniba A, Nakanishi T and Suzuki J 1994 Int. J. Mod. Phys. A 95267
[KOS] Kuniba A, Ohta Y and Suzuki J 1995 Quantum Jacobi-Trudi and Giambelli formulae for $U_{q}\left(B_{r}^{(1)}\right)$ from analytic Bethe ansatz J. Phys. A: Math. Gen. at press
[KS] Kuniba A and Suzuki J 1995 J. Phys. A: Math. Gen. 28711
[LS] Leznov A N and Saveliev M V 1979 Lett. Math. Phys. 3489
[Ma] Macdonald I G 1995 Symmetric Functions and Hall Polynomials 2nd edn (Oxford: Oxford University Press)
[MOP] Mikhailov A V, Olshanetsky M A and Perelomov A M 1981 Commun. Math. Phys. 79473
[S] Suris Yu B 1990 Phys. Lett. 145A 113; 1991 Phys. Lett. 156A 467
[T] Toda M 1988 Theory of Nonlinear Lattices (Berlin: Springer)
[VF] Volkov A Yu and Faddeev L D 1992 Theor. Math. Phys. 92837
[Wa] Ward R S 1995 Phys. Lett. 199A 45
[Wi] Wiegmann P B 1995 Quantum integrable models and discrete-time classical dynamics, Talk Satellite Meeting of Statphys-19 (Nankai Institute of Mathematics, Tianjin, August 1995)

